Exercise 69

In Chapter 9 we will be able to show, under certain assumptions, that the velocity $v(t)$ of a falling raindrop at time t is

$$
v(t)=v^{*}\left(1-e^{-g t / v^{*}}\right)
$$

where g is the acceleration due to gravity and v^{*} is the terminal velocity of the raindrop.
(a) Find $\lim _{t \rightarrow \infty} v(t)$.
(b) Graph $v(t)$ if $v^{*}=1 \mathrm{~m} / \mathrm{s}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for the velocity of the raindrop to reach 99% of its terminal velocity?

Solution

Calculate the limit of the velocity as $t \rightarrow \infty$.

$$
\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty} v^{*}\left(1-e^{-g t / v^{*}}\right)=\lim _{t \rightarrow \infty} v^{*}\left(1-\frac{1}{e^{g t / v^{*}}}\right)=v^{*}(1-0)=v^{*}
$$

If $v^{*}=1 \mathrm{~m} / \mathrm{s}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, then

$$
v(t)=1-e^{-9.8 t} .
$$

A graph of this function versus t is shown below.

To find how long it takes for the velocity of the raindrop to reach 99% of its terminal velocity, set $v(t)=0.99 v^{*}=0.99(1)=0.99$ and solve the equation for t.

$$
\begin{aligned}
0.99 & =1-e^{-9.8 t} \\
e^{-9.8 t} & =0.01 \\
\ln e^{-9.8 t} & =\ln 0.01 \\
-9.8 t \ln e & =\ln 0.01 \\
t & =-\frac{1}{9.8} \frac{\ln 0.01}{\ln e} \approx 0.469915 \text { seconds }
\end{aligned}
$$

